Effects of nonmagnetic interparticle forces on magnetorheological fluids
نویسندگان
چکیده
منابع مشابه
How nonmagnetic particles intensify rotational diffusion in magnetorheological fluids.
In this work we propose a mechanism to explain the enhancement of the magnetic-field-induced yield stress when nonmagnetic particles are added to magnetic particulate suspensions, i.e., two-component suspensions. Our main hypothesis is that the nonmagnetic particles collide with the field-induced magnetic aggregates under shear flow. Consequently, supplementary fluctuations of the orientations ...
متن کاملInverse magnetorheological fluids.
We report a new kind of field-responsive fluid consisting of suspensions of diamagnetic (DM) and ferromagnetic (FM) microparticles in ferrofluids. We designate them as inverse magnetorheological (IMR) fluids for analogy with inverse ferrofluids (IFFs). Observations on the particle self-assembly in IMR fluids upon magnetic field application showed that DM and FM microparticles were assembled int...
متن کاملFerrofluids and Magnetorheological Fluids
Composition, synthesis and structural properties of ferrofluids and magnetorheological fluids are reviewed and compared. The similarities and main differences between the two types of magnetically controllable fluids are outlined and exemplified in the paper. Chemical synthesis and structural characterization of magnetizable fluids for engineering and biomedical applications are thoroughly disc...
متن کاملHaptic interfaces based on magnetorheological fluids
In this paper we present an innovative application of magnetorheological (MR) fluids to haptic interfaces. These materials consist of a suspension of a micron-sized, magnetizable particles in a synthetic oil. Exposure to an external magnetic field induces in the fluid a change in rheological behaviour turning it into a near-solid in few milliseconds. Just as quickly, the fluid can be returned t...
متن کاملInterparticle Force in Nonlinear Electrorheological Fluids
The prediction of the strength of the electrorheological (ER) effect is the main concern in a theoretical investigation of ER fluids. The ER effect originates from the induced interaction between the polarized particles in an ER fluid. As the mismatch in material parameters (either conductivities or dielectric constants) is responsible for the ER effects, previous theoretical studies have taken...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2009
ISSN: 1742-6596
DOI: 10.1088/1742-6596/149/1/012063